09. Vector Addition

Vector Addition

The mathematical definition of a vector addition in Rn\mathbb{R^n} is to add the elements entry by entry.

Lets look at the following example of two vectors:

  • x=[a1a2a3:an]Rn\vec{x}=\begin{bmatrix} a_1\\ a_2\\ a_3\\ :\\a_n\end{bmatrix}\in\mathbb{R^n}

  • y=[b1b2b3:bn]Rn\vec{y}=\begin{bmatrix} b_1\\ b_2\\ b_3\\ :\\b_n\end{bmatrix}\in\mathbb{R^n}

The result, x+y\vec{x}+\vec{y}, will be in Rn\mathbb{R^n} as well.

Mathematically:

x+y=[a1+b1a2+b2a3+b3:an+bn]Rn\vec{x}+\vec{y}=\begin{bmatrix} a_1+b_1\\ a_2+b_2\\ a_3+b_3\\ :\\a_n+b_n\end{bmatrix}\in\mathbb{R^n}

Equation 4